Code: CS3T1

II B.Tech - I Semester - Regular/Supplementary Examinations November - 2018

DISCRETE MATHEMATICS (COMPUTER SCIENCE \& ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Write the truth table for $\overline{P \mathrm{VQ}}$.
b) Check whether the formula $\mathrm{P} \rightarrow \mathrm{P}$ is a tautology or not .
c) Verify whether $P \Lambda(\neg P \vee Q) \Rightarrow(Q \rightarrow R)$.
d) What is Rule P and Rule T .
e) Define free and bound variables with examples.
f) Give an example for a partially ordered set which is not a lattice.
g) Define sub-Boolean algebra.
h) Is there a graph with degree sequence (1, 2, 3, 4, 5). Justify your answer.
i) Define minimal spanning tree.
j) Is $\mathrm{K}_{3,3}$ a planar graph. Explain your answer.
k) Define chromatic number of a graph.

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Prove that $P \rightarrow(Q \rightarrow R) \Leftrightarrow(P \rightarrow Q) \rightarrow R$.

8 M
b) Prove that $(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow R) \Rightarrow R$.

8 M
3. a) Prove
$q \wedge(u \rightarrow r) \wedge\{(r \wedge s) \rightarrow(p \vee t)\} \wedge\{q \rightarrow(u \wedge s)\} \wedge \neg t \Rightarrow p \vee d$, using the rules of inference.

8 M
b) Show that

8 M
$\forall(x)(p(x) \vee q(x)) \Longrightarrow(\forall(x)) p(x) \vee \exists(x) q(x)$
4. a) Show that $\left(S_{24}, D\right)$ is a lattice, where $S_{6}=\{1,2,3,4,5,6,8,12,24\}$ and D is the relation of 'division'.

8 M
b) Define Boolean algebra and write its properties. 8 M
5. a) State and prove "The First Theorem of Graph Theory".

4 M
b) Define isomorphism between two graphs. Give an example for two graphs which are not isomorphic.
c) Define a tree with an example and prove any one of its properties.
6. a) State and prove Euler's formula.
b) Explain Planar graph, Multigraphs, Euler circuits and Hamilton graph with examples for each.

